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ON THE HYPERBOLICITY, STABILITY AND CORRECTNESS OF THE CAUCHY PROBLEM 
FOR THE SYSTEM OF EQUATIONS OF TWO-SPEED MOTION OF TWO-PHASE MEDIA* 

L.A. KLEBANOV, A.E. KROSHXLIN, B.I. NIGMATULIN, and R.I. NIGMATULIN 

Unsteady one-dimensional two-speed flows of a disperse stream are investigated and 
properties of the respective system of differential equations are investigated. Pro- 
pagation of small perturbations is studiedon the example of a mixture of barotropic 
gas with incompressible particles. It is pointed out that the nonhyperbolicity and 
instability of small perturbations peculiar to the system of differential equations 
are due to incomplete definition of interaction between phases and inside the dis- 
persed phase, and to transport effects, and unrelated to acoustic perturbation pro- 
pagation. Estimates are obtained for the characteristic times Of instability 
development in streams of the drop and bubble structure. 

The "conditional" correctness of the Cauchy problem for the nonhyperbolic system of dif- 
ferential equations considered here is established on the example of the problem of uniform 
motion of a disperse mixture of incompressible phases, when the dispersed particles are gradu- 
ally drawn into the carrier phase motion and the slipping velocity approaches zero. The in- 
clusion internal pressureeffecton flow stability is studied. 

Many problems of hydrodynamics of heterogeneous media with unequal phase velocities dif- 
fer from the respective problems of hydrodynamics of single-phase fluid /l/. A closed system 
of differential equations was proposed in the fundamental paper /2/ for the definition of two- 
speed two-phase flows, and its nonhyperbolicity in the case of incompressible phases noted. 
It was shown in /3/ that the more general case of compressible phase flows the system of dif- 
ferential equations is nonhyperboic for real values of slipping (velocity difference). The 
method of averaging was used in /4,5/ for deriving equations of flow for a perfect fluid with 
small particles, and the nonhyperbolicity of the system of equations with the consequent flow 
instability pointed out. Layered ocean flows were considered in /6/, and the appearance of 
nonhyperbolicity in the considered case noted. The complexity of numerical calculations of 
two-speed flows is described in detail in the survey paper /I/. 

1. The system of differential equations that defines the unsteady flow of a one-dimens- 
ional two-phase two-speed stream of a monodisperse mixture with barotropic phases but without 

phase transition and collision effects is of the form /I/ 

where cti is the volume concentration, pi0 is the true density, p is the pressure, Vi is the 

velocity, F is the phase interaction force due to the difference of phase velocities per unit 
of mixture volume, and g is the external mass forces intensity. Subscripts i =I,2 relate, 
respectively, to the first and second phase. We shall consider the carrier phase as the first 

(i = 1) and the dispersed one (i = 2) as the second. 
. Force F of phase interaction is represented in the form of the sum of several Components, 

such as viscous friction force F,, joined mass forces p,,, , forces Ftb due to unsteadiness of 
the viscous boundary layer (Basset forces), etc. 

F=F, I-F,i_P,,-; .._ (1.2) 

F, = a,a.,K, (vi -v%), F, = * { -!!!!$ _ -!$L) 
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At fairly low Reynolds numbers Rn = 2alv~~jp,"~,-1, where 
the dynamic viscosity coefficient of the carrier phase, and 
Stokes law 
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a is the particle radius, ktL1 is 
U12 =vZ - u,),we have for & the 

(1.3) 

where cPf is a coefficient that takes into account the volume content of dispersed particles 

a, on force f per particle, and z,; is the relaxation time of equalization Of 
phase velocities. 

Let the interphase force be determined only by the friction force (F = F,), i.e. depend 
only on cx2 and v,,=v,-us, which is usually the case with gaseous suspensions. (The effect 
of apparent mass is taken into account in Sect.3). In that case the characteristicdirections 
&/dt= 5 of the system of Eqs.cl.1) are roots of the following equation /2,3,7/z 

--&(A - v#(h - L)p)Z -+$(A- U$- -$'h --VI)" = 0 (1.4) 

&=++$j". + '*+-&; +~: 
0'11 

i-1.2 

where Cl and ~2 are propagation velocities of acoustic perturbations in the first and second 
phase, respectively. 

Note that the allowance for lack of barotropicity and of temperature nonequilibrium{?', + 
T,) of the mixture does not greatly effect the equation of characteristics. System (1.1) is 
in that case supplemented by equations of conservation of internal energy ui for each of the 
mixture constituents. The two characteristic directions of the derived system of equal tothe 
first and second phase velocities (01 andv.J and correspond to transport velocitiesofthesmall 
temperature perturbations. The remaining four eigenvalues are roots of Eq.(1.4), and in this 
case 

api &_- I--P-L 
r. 

ap.0 -1 
(p.")2 du. 

1 1 I 

Analysis of Eq.(1.41 shows that two eigenvalues are always real, while the remaining two 
may be complex. When the slipping velocity Qis considerably lower than the speedsofsound 
et and CQ , the roots of Eq.11.4) are of the form 

X(1*2)= p* 
I 
3232 -i- -$ c‘x * iv12 @$)i/,], ia=- (1.5) 

?&~)=v*fc*; o*=p*(+t +J / 

which shows that the pair of real values h( s,4) corresponds to propagation of acoustic waves in 
the medium considered. The quantity C* corresponds to the propagation velocity of acoustic 
pertuxbations when ~1 = VQ = 0. The quantity v* is an addition to the propagation velocityof< 
small perturbations due to the mixture motion. Note that v&differs from the mixture means 
mass velocity v defined as 

pv = PICcLIUl + pz"a*v,, p = PI%, i pzOcZz (1.6) 

It follows from 11.51 that the pair of complex eigenvalues is unrelated to acoustic per- 
trubations, and is solely due to phase transport effects at velocities v1 and VZ . At points 
where v1 = v2 = v eigenvalues &( I**) or characteristic directions become real and equal V. 

2. Consider one of the steady state solutions of the system of Eqs.(l.lf which yields a . 
nonzero phase slipping um owing to external mass forces of intensity g constant with respect 
to time and coordinate. 

If both phases are incompressible, we have a steady state (parameters a,, vl, v,,~:are time 
independent), homogeneous (parameters W =(ulrvl, v,)are independent of the coordinate) solution 
of system (1.1) that satisfies the equations 

--a1 $_ -_F + ploalg=o, --e,! .$- f_F -+- pzoa2g=0, +'/~X=(W, F=K‘,wih --3) (2.1) 

If at least one of the phases is compressible, then owing to pressure variation along IL:, 
the density of that phase also varies with X. It can be shown that a steady state homogene- 
ous (with parameters W = (al, v,,v,) independent ofx)solution does not exist. It is possible 
to visualise a case in which the phase compressibility has only a slight effect at some finite 
distances .G. For this it is necessary that 
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(2.2) 

In the case of compressible phases the steady state solution of system (1.1) does not 
much differ from the steady state solution which follows from (2.11, and is of the form 

wll = (a,, Us, v,J = const; -$=pg, 
VIZ =L'1 _ v2 = (Pl" - Pr') B 

KLl 
(2.3) 

To simplify exposition we shall consider the case when the dispersed phase substance 
(particles) is incompressible 

P 20 = const (c2 = co) 

Consider the development of weak perturbations of solution (2.3) 

W = w0 + W' exp [i(kx + ot)l, (We WO, i2 = -1) 

The corresponding dispersion equation is of the form 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

We distinguish two types of solutions. 

Solution of the first type with k real. Four complex values of o can be found for 
every k in (2.6) 

k = Re {k) (Im {k) = 0); w = Re {w) + i Im fQ) (2.8) 

that yield for each k foursolutions thatcorrespond to waves (of length h) 

which are sinusoidal with respect to coordinate and increase or are damped with time. 
Consider the limit cases of short (h-+0 or k-t oo)and long@+ mar k-+0) waves when %Z 1 

Cl< 1. Separation of real and imaginary parts as k+ 00 yields 

Similarly, as k+ 0 

(1)(1.2)=(~-)"'Clkt.i~~(~)C12ka 

h-,p &)=_ i - I 
F1"GrD 

o(+,, td4) = (PaI + cp - a?) vlzk - 

ia17~ 
i 
(pal + ‘p - a2 - 1)2 + 2 (2al + cp - a$)“} v,~*Ic~ $ 

O(*); OF=Rep(F)}, Im~(~)}=O 

(2.11) 

In both limit cases the first two roots correspond to acoustic perturbation propagationat 
frozen c'or equilibrium ce speeds of sound and damping coefficients Dfand D”, respectively 

(2.12) 
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Since damping coefficients are positive, consequently in conformity with (2.9) the 
acoustic perturbations are damped and do not affect stability of the initial steady state. 

The third and fourth roots in (2.10) and (2.11) are independent of the speed of sound in 
the carrier phase, and correspond to propagation of convection perturbations. It will be 
seen that when ulzf 0 and a,>0 the third or fourth root in (2.10) (depending on the sign of 
sa) as k+ca, and the fourth root in (2.11) as k-+0 yield negative D = Im (0) which cor- 
responds to an exponential increase of perturbations. Thus the system of Eqs.(l.l) admits for 

long, as well as for short waves increasing convection perturbations, which renders unstable 
the initial steady state homogeneous solution (2.3) with nonzero phase slipping (~zf0) and 
nonzero concentration (a,>O) of the dispersed phase. Note that when via = 0 or a2 = 0 the 
appropriate convection perturbations becomes neutrally unstable. 

The fact that D = Im {u}+ - m when Vlz# 0, a,> 0 and k-t 00 shows the incorrectness of 
the Cauchy problem formulation for Eqs.(l.l) with initial data close to the homogeneoussteady 
state (2.3) with nonzero phase slip (v,,+O)and nonzero dispersed phase content (a, > 0) . 

Solutions of the second type with 61 real. Here, from (2.6) we obtain for k the 
complex value 

o = Re (01, Im {w} = 0; k = Re {k} + i Im {k} (2.13) 

This method was used in /8/ for analyzing small perturbations in disperse mixtures in 
the presence of temperature effects and phase transitions. Solution (2.13) of the second 
type define periodic perturbations of fixed frequency and amplitude (proper for each point x). 
The respective waves either increase or are damped on the x axis. 

It was shown in /8/ that, when the mixture is initally in the equilibrium state (VI= Pa), 
small perturbations that correspond to acoustic wave propagation are stable, as shown above. 
The equilibrium and frozen speeds of sound and of respective damping coefficients coincide 
with those calculated above. It can be shown that for finite wave lengths and perturbation 
frequencies the speed of sound and the damping coefficients which correspond to the two-wave 
type (i.e. the actual wave length or the actual perturbation frequency) are different. 

3. Taking into account that intheconsidered here limit cases of (k-too and k+O) the 

convection wave propagation velocites and the respective damping coefficients are independ- 
ent of the speed of sound , we shall investigate the effect of phase relative motion in the in- 
put (steady) state and of the interphase forceduetothe additionalmassesonthe stability of 
convection perturbations and on the related to it lack of hyperbolicity of system (l.l),using 
a simpler model of the disperse medium with incompressible phases. 

The system of Eqs.cl.1) of continuity and momentum with allowance for the interphase 
force due tothe effect of additionalmasses in the case of a disperse system with incompres- 
sible phases is of the form /l/ 

Eliminating the pressure gradient from the equations of momenta, adding the two continu- 
ity equations and substituting the new variables w andvyafor vi, and Us , and introducing co- 
efficients X and & 

w=v,-pa, VV = alv, + a2vz, x=+(l+$g ,*=+(I+~, (3.2) 

we transform the system of Eqs.(3.1) to the form 
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Since the first two equations do not contain derivatives of P and JJV, the structure of 
system of u? and al can be investigated independently. The respective characteristic direc- 
tions of that subsystem are complex 

The comparison of (1.5) with (3.4) show that the characteristics of system (1.1) are not 
qualitatively altered when the effect of apparent masses is taken into account, and that it 
continues to have two complex characteristics. 

We consider, as in Sect.2, the development of weak perturbations of the type (2.5) ofthe 
steady homogeneous state /solution/ (2.3). The third of Eqs.(3.3) implies that the perturba- 
tion amplitude +is zero, hence perturbations G or F,J(qlaz) are defined by perturbations &and 
%’ 

G’ = - /& - f,&. (fv’ = 0) (3.5) 

The condition of existence of nonzero solutions 1~' and CQ' reduces to a dispersion quad- 
ratic equation whose roots are of the form 

Separating the imaginary part of &,a) that determines the exponent of D, we obtain 

i.e. in the presence of relative motion of phased u,* in the initial state and nonzero con- 
centration of the dispersed phase CL~ there exists, as shown in Sect.2, convection perturba- 
tions that disturb the stability of the steady homogeneous state (2.3). 

As in the case considered in Sect.2, we conclude that the Cauchy problem formulation for 
Eqs.(3.1) with initial conditions close to the steady homogeneous state I$',defined in (2.3) is 
incorrect when u,~#= 0, a2>x Oowing to the unbounded increase of the quantity (-U) as k-+00 

This conclusibn is based on the behavior of system (1.1) or (3.1) when the wave length 
) _; 2&-1 approaches zero, while the indicated systems of equations correctly define the be- 
havior of a disperse mixture only when the characteristic distances considered in the problem 
(in particular the wave length A) are considerably greater than the dispersed particle dimen- 
sion a. It is, therefore possible to assume that the boundless increase of the exponent of 
(--~)a~ %-to is the consequence of the neglect in equations of type (1.1) or (3.1) of some 
dissipation processes that occur when ultrashort waves (i,(a) pass through disperse media. 

The allowance or nonallowance for phase compressibility, interphase forces oftheinertial 
type (Archimedean force, apparent additional mass forces) does not affect the anomalous 

character of behavior of variation of Des k 40. In connection with this it may be necess- 
ary, when solving equations of the type (1.1) or (3.1) RS definitions of unsteady flows of 

disperse media, to suppress the unobtainable in reality ultrashort wave perturbationincrease 
by introducing in these equations some additional terms. 

The system of equations correctly defines the behavior of long-wave perturbations when 
0. -+ 00 or i. < n). Existence of convection perturbations wheni&#O,c$>O for which the 

exponent of Dis negative (see (2.9)) also indicates physical instability of the hcmogeneous 
steady state solution considered. In particular, the steady homogeneous mode of dispersed 

particle sedimentation when pno:>plOor rise when 0; <pl" is unstable owing to gravity. 
If the interphase Archimedean force r*,2plilx andthe apparentadditionalmass forces areneg- 

lectedinequations ofmomentaofthe phase system 13.11, itis thennecessarytosubscituteinthe 

characteristic equations (3.4), (3.61, and (3.7) zero for X , and it is clear from (3.41 that 
the system has become hyperbolic, but (3.7) implies that it solution is, as previously, un- 

stable. 1n a unique particular case in which "/. = 0 and aK,/i& = 0 the solutionis neutrally 
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stable Im {o(V)} = 0.) We point out that this case was virtually never considered in investiga- 
tions of solutions of specific problems (*). 

4. The rate of instability development depends on the wave number h- and approaches in- 
finity as the wave length h = 2nk-1 approaches zero. Taking into account the validityofsystem 
(1.1) in the case when the problem characteristic distances (including wave length h) greatly 
exceed the distance between particles, and assuming that perturbations with shorterwaveswould 
be damped owing to the dissipation processes not defined in the system of Eqs.(l.l),weobtain 
the condition for the maximum of k . It can be derived from the system of Eqs.(l.l) and is 
k Inax - a,‘hl(an), where a is the radius of a particle, and the minimum length of a wave whose 
development can be analyzed using Eqs.(l.l) and (3.1) is equal n times the mean distance (h- 
naa~"', ?~>l)between particles. The obtained constraint enables us to evaluate the actual 
time of development of instability in gas-liquid streams. Note that when the problemis solved 
numerically using the system of Eqs.(l.l), perturbations with wave length of the order of the 
difference grid dimension h- Axappear in the system. Then, if AX $ &&t we may have 
numerical instability. In such cases it is necessary to provide for the suppression of such 
parasitic perturbations using, for instance, additional terms of pseudoviscosity type. 

Let ue estimate the rate of small perturbation increase under conditions characteristic 
for gas-liquid streams. We specify the viscous friction force in gas with liquid drops, as 
well as in water with gas bubbles, as in /l/, in conformity with (1.2) and (1.3) withcp,=(1+ 
~)/a,. At the limit c(.,- o the following relations hold: 

In the case of gas with liquid drops, taking into account that ~~~~~~~~ and using (4.1), 
from (3.7) with a2 > ~~~!(6p,") we can obtain 

For the characteristic time At of instability development we have 

(4.2) 

(4.3) 

In gas with liquid drops flow mode R,, is usually not very large and ar< I, hence the time 
of instability development is fairly long. For example, for parameters 

P - 1(J5Pa, aL - IF’, u12 -10-l m/s, u-110-4m, ~"1-10-' kg/(m.s) (4.4) 

characteristic for flows of gas with liquid drops, from (3.10) with II= 2Owe obtain At- 6 s. 
If the characteristic time At of instability development is considerably longer than 

characteristic time of the problem (the time particles remain under conditions (4.4)), the in- 
dicated instability may not develop in practice. 

From (3.7), taking into account (4.1) and the condition that PI"> Ps'l for the flow of 
liquid with bubbles we obtain 

(4.5) 

For the characteristic time At of instability development we have 

Using the characteristic for bubble flow parameters 

P -IO5 Pa, ez _ 10-1, U,> - inqm/S j ” - 10-s a,p1 -0.3.10-s kg/m-s 

from (3.7) with n = 20 we obtain At=: 0.5 s. 
If the bubble type of flow of a two-phase mixture the carrier medium velocity isnothigh 

(e.g., q = 0 inabubbling column), such instability can develop in real equipment and be the 
determining factor. 

Note that the characteristic times At of instability development are proportionalto a;"/' 
and u;'!~ in the drop and bubble type of flow, respectively. The form of obtained estimates 

*) The authors' attention to this exceptional case with neutral stability was drawn by A.N. 
Kraiko. 
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(4.2) and (4.5) differs from that of similar estimates in /4,5/ owing to the effect of viscous 
friction force F, which was not considered in /4,5/. 

5. In a wide class of problems free of any noticeable effect of outer mass forces, for 
example in shock wave investigations, the finiteness of the phase slipping velocity u,* with 

the associated with it instability appear only in some time interval or in some zone, outside 

of which ulz approaches zero. Let us consider the stability of one of the unsteady state solu- 

tions (hence different from (2.3)) of the system of Eqs.(3.1) for a mixture of two incompres- 

sible phases in the absence of external mass forces g= 0. 
If at the initial instant t = 0 the medium state is homogeneous, i.e. its parameters are 

independent of r, but unstable owing to the non-coincidence of phase velocities, then in the 

inertial coordinate system moving at instant t = 0 at the dispersed phase velocity, for the 

system of Eqs.(3.1) we have the following initial conditions: 

t = 0, VI = V,“, up - 0, cII = CL,” 

As the boundary conditions we take the condition of constancy of the medium mean volu- 

metric flow rate that can be obtained by moving a piston at constant velocity up 

vy = alv1 -/- a,v, = L-0 = al"l~,o 

Because of the carrier action, particles are set in motions, and the velocitiesofphases 

are gradually equalized. 

Solution of this problem for UP(~) is of the form 

(5.1) 

alo = Ql”, a20 = I - alo, ct. -= voia,, 
It can be shown that as t -00 the solution will indicate the disappearance of phase slip- 

ping (u,, -0). Let us investigate the stability of the derived solutionbyinvestigating per- 

turbed solutions at fixed mean volumetric flow rate 

w = w0 (t) + w’ (x, t), a, = a: + a’ (22, t) (w’ (( zoo, a' <at, v~' L 0) 

Then from (3.3) we obtain for w'and a' a linear system of equations tiose coefficientsv, 

V,"> fa, f, , unlike in Sect.3, are not constants but functions of time determined by the initial 

solution (5.1). Let us assume that perturbations U',CL are integrable in quadratures (belong 

to class l,,j. Then the unknown functions have their Fourier tansforms VV' andA'. 

As the result of transformations, the system of equations for w' and A' reduces to degen- 

erate hypergeometric equations. Finally, it is possible to obtain for Wand -4 ,ast-+~,an 

estimate for the infinitely short waveswhich areofthe greatest interest 

1imA' - D, (k)e"" (5.3) 

lim W’ - D,’ (k)ehi‘, h > 0, t +oo, k + 03 

since their rate of growth is the highest. In these expressions DO(lij is a linear combination 

of Fourier transforms A’(k,t) and W’(k,t) at the initial instant of time C = 0. 
It follows from (5.3) that the formulation of the Cauchy problem is in this case incorrect, 

and the derived homogeneous unsteady solution (5.2) is unstable. Nevertheless, as inthe class 

of functions whose Fourier harmonics approach zero as k -00 , more rapidly than e-hk,the Cauchy 

problem is "conditionally correct" /9,10/. The necessary condition for satisfying this con- 

straint is the infinite differentiability of the imposed perturbation. Localized perturbations 

of the form P,, (.z)e-dX' (for any d> 0), where P,(z) is an arbitrary n -th power polynomial, sat- 

isfy that condition. 
Note that the requirement for fairly rapid decrease of the amplitude of Fourier harmonics 

as k-co in the class of functions for which the "conditional correctness" of the Cauchyproblem 

holds is related in Sect.3 to the question of inapplicability of system (1.1) for ultrashort 

perturbations. 
A similar reasoning is valid for steady state solutions with constant slipping. In that 

case constraints on short-wave amplitude result in that in a finite time interval small per- 

turbations remain small. 
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Thus the above analysis shows that, although system (3.1) (and (1.1)) has imaginary 

characteristics and, consequently, is nonhyperbolic, there exists a class of functionsinwhich 
the Cauchy problem for system (3.1) (the system (1.1) is "conditionally correct". 

6. Various additional mechanisms of flow stabilization, which are not accounted for in 

the systems of Eqs.tl.1) and (3.1), can exist in real flows. Consider the effect of internal 
pressure of inclusions, resulting from the interaction induced by the chaotic motion, of the 
stability of flow. For investigating this we introduce the pressure of a "pseudogas" of dis- 
persed particles defined by the formula 

(6.1) 

where a2* ~0.5 is the maximum possible particle concentration (close packing). The equation of 
momentum of particles in system (3.1) is then of the form 

It can be shown that in that case formulas (3.3), (3.4), (3.6), and (3.7) remain valid 
when the quantities (x/x*) are replaced by K 

(6.3) 

Formulas (3.4), (3.7), and (6.3) show that for -I< n(2 system (3.1) becomes hyperbolic 
and its solution stable as az -tO and a,.--+-0.5. There exists then a&,'., such that when pzO> 

Pm* , system (3.1) is hyperbolic and its solutions are stable for any a*. Indeed, for any 
fairly high Pzo parameter K is negative, eigenvalues of (3.4) become real, and the damping de- 
crement in (3.7) becomes positive. 

The flow can evidently be stabilized also by other volume forces impeding the bunching of 
inclusions. For instance, it can be shown that the allowance for turbulence diffusion (intro- 
duction of terms D@aildx2 and Dpi”aidviit3xz1 where D is the diffusion coefficient, in the right- 
hand sides of respective equations of continuity and momentum of system (3.1)) also stabilizes 
the flow. 

7. We conclude by presenting a simple physical model illustrating the origin of instab- 
ility in two-speed flows, and the effect stabilizing mechanisms. Distribution of particle 
velocities along the z:axis at some instant of time is shown in Fig.1. It will be seen that 
in the time interval At=~s!Av~ points A and B move, respectively, to points A",B" , i.e. they 
prove to be at the same point of space. Such "whiplash-Like motion" of particles results in 
an unbounded growth of % and this is the cause of instability development. Such instab- 
ility can obviously be eliminated by applying additional forces that would inhibit such sudden 
motion. For instance, the introduced above pressure Pz of a pseudogas impedes the concentra- 
tion of particles. 

Another example of two-speed flow which does not result in a whiplash motion even in the 
absence of stresses in the second phase (:,=O) is shown schematically in Fig.2. Because of in- 
teraction between particles with the carrier phase, the mean velocities of particles A and E 
may become equal(Av'< Au) before the occurance of whiplash motion. The possibility of its oc- 
currence is solely determined by the initial velocity distribution and particle concentration. 
With good initial distributions that do not result in whiplash, the small perturbationsinsert- 
ed in the flow remain small, as in the problem considered in Sect.5 on the drawing in of part- 
icles by the motion of the carrier medium. 

When the volume concentration of particles is small and the dependence of the carrier 
medium velocity 01 on the volume concentration a, can be neglected (L.~ = const),it can be assum- 
ed that particles A and B move independently. It is then possible to consider the case, when 
the carrier medium with constant velocity and equal to that of particle E, and obtain the 
following condition of whiplash absence for particles of mass Q: 

UB-UA 
-g<+ 

P2O 
-XT-- TLt = K, 

Note that this condition does not take into account the effect of particle volume concent- 
ration on the velocity of the carrier medium. 
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I I I 
As d 5 

Fig.1 Fig.2 

We shall describe two mechanisms by which the particle volume concentration a2 affects 
the flow stability. Consider the flow of liquid in a vertical pipe with bubbles of gas fed 
at its lower end floating upward. We assume that initially the liquid velocity is zero and 
the volume concentration of bubbles along the pipe is constant. Analysis of the continuity 
equation shows that, if at some instant of time the particle concentration in section dz in- 
creases, the velocity of liquid in that section becomes negative. The appearance of negative 
velocity of the carrier phase lowers the pressure in section dz (inconformity with the equa- 
tion of momentum conservation). The lower pressure region by attracting into it more bubbles 
will further increase bubble concentration in section ds. This mechanism was noted in /4/; 
it is defined in Eq.(3.10) by the term Q='~xx~-*L~~~~ a,a,k*. Another term in that equation, which 
implies the possibility of unlimited growth of perturbations is S = 4alclz~+-'fak which shows that 
at the limit, as k-m , the most significant term is Q. However, if the condition imposed 
by the applicability of system (1.1) on the minimal wave length km,Qa,"'n(an)-' (Sect.4) is 
taken into account, the question which of the terms defines the most rapidly increasing per- 
turbations cannot be answered a priori. It was shown in Sect.4 on two examples that in the 
case of gas with liquid drops type of flow the most rapid perturbation growth corresponds to 
theS term, while in that of bubble type flow it is the Qterm. This explains the difference 
in exponents of exp in (4.2) and (4.5). 

The authors thank A.A. Barmin, A.N. Kraiko, and A.G. Kulikovskii for discussions and valu- 
able advice. 
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